Relative shortening velocity in locomotor muscles: turkey ankle extensors operate at low V/V(max).

نویسندگان

  • Annette M Gabaldón
  • Frank E Nelson
  • Thomas J Roberts
چکیده

The force-velocity properties of skeletal muscle have an important influence on locomotor performance. All skeletal muscles produce less force the faster they shorten and typically develop maximal power at velocities of approximately 30% of maximum shortening velocity (V(max)). We used direct measurements of muscle mechanical function in two ankle extensor muscles of wild turkeys to test the hypothesis that during level running muscles operate at velocities that favor force rather than power. Sonomicrometer measurements of muscle length, tendon strain-gauge measurements of muscle force, and bipolar electromyographs were taken as animals ran over a range of speeds and inclines. These measurements were integrated with previously measured values of muscle V(max) for these muscles to calculate relative shortening velocity (V/V(max)). At all speeds for level running the V/V(max) values of the lateral gastrocnemius and the peroneus longus were low (<0.05), corresponding to the region of the force-velocity relationship where the muscles were capable of producing 90% of peak isometric force but only 35% of peak isotonic power. V/V(max) increased in response to the demand for mechanical power with increases in running incline and decreased to negative values to absorb energy during downhill running. Measurements of integrated electromyograph activity indicated that the volume of muscle required to produce a given force increased from level to uphill running. This observation is consistent with the idea that V/V(max) is an important determinant of locomotor cost because it affects the volume of muscle that must be recruited to support body weight.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling of in vivo muscle velocity during feeding in the largemouth bass, Micropterus salmoides (Centrarchidae).

Many vertebrates undergo large increases in body size over the course of a lifetime, and these increases are often accompanied by changes in morphological and physiological parameters. For instance, in most animals, increases in size with growth are accompanied by decreases in the maximum speed of shortening (V(max)) in locomotor muscles. Curiously, in muscles involved in suction feeding, V(max...

متن کامل

Muscle architecture and force-velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control.

1. Isometric and isotonic contractile parameters of the soleus (SOL) and medial gastrocnemius (MG) muscles of seven adult cats were studied. In addition, architectural characteristics of six contralateral pairs of these ankle extensors were determined. 2. The in situ peak isometric tetanic tension developed by the MG at the Achilles tendon is nearly 5 times (9,846 vs 2,125 g) that of the SOL mu...

متن کامل

Optimal shortening velocity (V/Vmax) of skeletal muscle during cyclical contractions: length-force effects and velocity-dependent activation and deactivation.

The force-velocity relationship has frequently been used to predict the shortening velocity that muscles should use to generate maximal net power output. Such predictions ignore other well-characterized intrinsic properties of the muscle, such as the length-force relationship and the kinetics of activation and deactivation (relaxation). We examined the effects of relative shortening velocity on...

متن کامل

A motor and a brake: two leg extensor muscles acting at the same joint manage energy differently in a running insect.

The individual muscles of a multiple muscle group at a given joint are often assumed to function synergistically to share the load during locomotion. We examined two leg extensors of a running cockroach to test the hypothesis that leg muscles within an anatomical muscle group necessarily manage (i.e. produce, store, transmit or absorb) energy similarly during running. Using electromyographic an...

متن کامل

Hindlimb extensor muscle function during jumping and swimming in the toad (Bufo marinus).

Many anurans use their hindlimbs to generate propulsive forces during both jumping and swimming. To investigate the musculoskeletal dynamics and motor output underlying locomotion in such physically different environments, we examined patterns of muscle strain and activity using sonomicrometry and electromyography, respectively, during jumping and swimming in the toad Bufo marinus. We measured ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 294 1  شماره 

صفحات  -

تاریخ انتشار 2008